RS232 Command Protocol

FLD-MAX-S Series Matrix Switcher

1. Control code

Matrix protocol set

The serial port protocol comprises the information of the Baud rate: 115200 by default; data bit: 8 bits; stop bit: 1 bit; and check bits: none.

2. Switching Instruction

2.1 Simplex Switching

Computer-to-matrix	Function	Matrix-to- Computer	Example
[X1]V[Y1].	[X1] is input and [Y1] is output through	V:[X1]->[Y1]!	1V1.
	simplex video.		
[X1]B[Y1].	[X1] is input and [Y1] is output through	B:[X1]->[Y1]!	1B1.
	simplex audio and video.		
[X1]*[Y1]&	[X1] is input and [Y1] is output through	V:[X1]->[Y1]!	1*1&
	simplex video.		
[X1]*[Y1]%	[X1] is input and [Y1] is output through	V:[X1]->[Y1]!	1*1%
	simplex video.		
[X1]*[Y1]!	[X1] is input and [Y1] is output through	B:[X1]->[Y1]!	1*1!
	simplex video.		
[X1]V#.	[X1] is input and [Y1] is output	[X1] V Through!	1V#.
	correspondingly through simplex video.		
[X1]#.	[X1] is input and [Y1] is output	[X1] A/V Through!	1#.
	correspondingly through simplex audio		
	and video.		

2.2 Fast Multiplex Switching

Computer-to-matrix	Function	Matrix-to- Computer	Example
[X1]V[Y1],[Y2].	[X1] is input and [Y1],[Y2] are output	V:[X1]->[Y1],[Y2] !	1V1,2,3.
	through simplex video.		
[X1]B[Y1],[Y2].	[X1] is input and [Y1],[Y2] are output	B:[X1]->[Y1],[Y2]!	1B1,2, 3.
	through simplex audio and video.		
[X1]All.	[X1] is input and output to all ways	[X1]A/V TO All!	1AII.
	through audio and video.		
[X1]*!	[X1] is input and output to all ways	[X1]A/V TO All!	1*!

	through audio and video.		
[X1]*&	[X1] is input and output to all ways	[X1] V TO All!	1*&
	through video.		
[X1]*%	[X1] is input and output to all ways	[X1] V TO All!	1*%
	through video.		
AIIV#.	All video channels are output in	All V Through!	AIIV#.
	one-to-one correspondence.		
All#.	All video channels are output in	All A/V Through!	All#.
	one-to-one correspondence.		
[X1],[X2]V#.	All video channels are output in	[X1],[X2] V Through!	1,2,3V#.
	one-to-one correspondence.		
[X1],[X2]#.	All video channels are output in	[X1],[X2] A/V Through!	1,2,3#.
	one-to-one correspondence.		

2.3 Simplex Closing

Computer-to-matrix	Function	Matrix-to- Computer	Example
0V[Y1].]. Simplex video is closed and [Y1] is output.		0V1.
0B[Y1].	Simplex video is closed and [Y1] is output.	ed and [Y1] is B:OFF ->[Y1]! 0B1.	
0*[Y1]&	Simplex video is closed and [Y1] is output.	V:OFF->[Y1]!	0*1&
0*[Y1]%	Simplex video is closed and [Y1] is output.	V:OFF->[Y1]!	0*1%
0*[Y1]!	Simplex audio and video are closed and [Y1] is output.	B:OFF ->[Y1]!	0*1!
[Y1]\$.	Simplex audio and video are closed and [Y1] is output.	B:OFF ->[Y1]!	1\$.

2.4 Fast Multiplex Closure

Computer-to-matrix	Function	Matrix-to- Computer	Example
[Y1], [Y2]V\$.	[Y2] Multi-channel video is closed, and	V:OFF->[X1],[X2]!	1,2,3V\$.
	[Y1], [Y2] are output.		
[Y1], [Y2]\$.	Multi-channel audio and video are	B:OFF->[Y1],[Y2]!	1,2,3\$.
	closed, and [Y1], [Y2] are output.		
AIIV\$.	All video output is closed.	All V Closed!	AIIV\$.
AII\$.	All audio and video output is closed.	All A/V Closed!	AII\$.

2.5. Global Preset Instruction

Computer-to-ma	Function	Matrix-to- Computer	Example
trix			
Save[N].	A current audio and video port connection state is	Save To F[N]!	Save1.
	saved in the Nth preset.		
Recall[N].	The Nth preset is recalled and taken as current port	Recall From F[N]!	Recall1.
	connection.		
Clear[N].	The Nth preset is cleared.	Clear F[N]!	Clear1.

3. Query Instruction

3.1 Channel Connection Query Instruction

Computer-to-matrix	Function	Matrix-to- Computer	Example
Status[Y1].	The connection state output by simplex	V:[X1]->[X2]!	Status1.
	audio and video is queried.	A:[X1]->[X2]!	
Status.	The connection state output by all-way	V:[X1]->[X2]!	Status.
	audio and video is queried.	A:[X1]->[X2]!	

3.2 System Query Instruction

Computer-to-	Function	Matrix-to- Computer	Example
matrix			
*Version;	Matrix version query	Version:[X5]	*Version;
*Туре;	Matrix model query	Type:[X5]	*Туре;
*MIP;	Matrix network mode query	DHCP:Use/NO Use!	*MIP;
	Matrix network port	MPORT:[X5]!	
	numbers query	CPORT:[X5]!	
	Computer host network	MIP:[X5]. [X6]. [X7]. [X8]!	
	port number query	GATE:[X5]. [X6]. [X7]. [X8]!	
	Matrix IP query	SUB:[X5]. [X6]. [X7]. [X8]!	
	Network gateway query	MAC:[X5]-[X6]-[X7]-[X8]-[X9]-[X10]!	
	Network subnet mask		
	query		
	Network hardware		
	addresses query		
*Bell;	Buzzer query	Bell:On/Off !	*Bell;
*BR;	Baud rate query	Baudrate:9600!	*BR;

Connect OK !	*ConnectTest;
	Connect OK !

4. Setting Instruction

Computer-to-matrix	Function	Matrix-to- Computer	Example
/:BellOff;	Turn off the buzzer	Bell Off!	/:BellOff;
/:BellOn;	Turn on the buzzer	Bell On!	/:BellOn;
/:MessageOff;	Return information	Message Off!	/:MessageOff;
	toward computer serial		
	port is closed.		
/:MessageOn;	Return information	Message On!	/:MessageOn;
	toward computer serial		
	port is opened.		
/:BR[X4];	Baud rate is set.	Baudrate:9600!	/:BR9600;
/%Lock;	A keyboard is locked.	System Locked!	/%Lock;
/%UnLock;	A keyboard is unlocked,	System UnLocked!	/%UnLock;
/#MPORT[X1];	Matrix network port	MPORT:[X1]	/#MPORT5000;
	number is set.		
/#CPORT[X1];	Main host network port	CPORT:[X1]	/#CPORT5100;
	number is set.		
/#MIP[X1].[X2].[X3].[X4];	Equipment IP is set.	MIP:[X1].[X2].[X3]	/#MIP192.168.0.2;
		.[X4]	
/#GATE[X1].[X2].[X3].[X4] ;	Equipment gateway	GATE[X1].[X2].[X3].[X4]	/#GATE192.168.0.1;
	number is set.	•	
/#SUB[X1].[X2].[X3].[X5];	Equipment subnet mask	SUB[X1].[X2].[X3].[X5];	/#SUB255.255.255.0;
	is set.		
/#MAC[X1]-[X2]-[X3]-	Equipment hardware	MAC:[X1]-[X2]-[X3]	/#MAC55-44-33-22-
[X4]-[X5]-[X6];	address is set.	-[X4]-[X5]-[X6]	11-00;
/#DHCPUSE;	IP is automatic acquired.	DHCPUSE	/#DHCPUSE;
/#DHCPNOUSE;	IP is fixed.	DHCPNOUSE	/#DHCPNOUSE;
	Set network parameter	Out of range!	
	value is wrong.		
	Network setting success.	NETSET:OK	

Network Interface Default Parameters

Network port number: 5000	Master controller network port number: 5100	
Matrix network IP: 192.168.3.100	IP Master controller network: 192.168.3.250	
Matrix network gateway number: 192.168.3.1	Matrix network subnet mask: 255.255.255.0	
Matrix network hardware initial address: 0x55.0x44.0x33.0x22.0x11.0x00;		

5. System Instruction

/#Reset;	Factory settings are	System Reset!	/#Reset;
	restored.		