RS232 Command Protocol

FLD-MAX-S Series Matrix Switcher

1. Control code

Matrix protocol set
The serial port protocol comprises the information of the Baud rate: 115200 by default; data bit: 8 bits; stop bit: 1 bit; and check bits: none.

2. Switching Instruction

2.1 Simplex Switching

Computer-to-matrix	Function	Matrix-to- Computer	Example
[X1]V[Y1].	[X 1$]$ is input and [Y 1$]$ is output through simplex video.	V :[X1]->[Y1]!	1V1.
[X1]B[Y1].	[X1] is input and [Y1] is output through simplex audio and video.	$\mathrm{B}:[\mathrm{X} 1]->[\mathrm{Y} 1]$!	$1 \mathrm{B1}$.
$[\mathrm{X} 1]^{*}[\mathrm{Y} 1]$ \&	[X1] is input and [Y1] is output through simplex video.	$V:[\mathrm{X} 1]->[\mathrm{Y} 1]$!	
[X1]*[Y1]\%	[X 1$]$ is input and $[\mathrm{Y} 1]$ is output through simplex video.	V :[X1]->[Y1]!	1*1\%
[X1]*[Y1]!	[X 1] is input and [Y1] is output through simplex video.	$\mathrm{B}:[\mathrm{X} 1]->[\mathrm{Y} 1]$!	1*1!
[X1]V\#.	[X 1] is input and [Y1] is output correspondingly through simplex video.	[X1] V Through!	1V\#.
[X1]\#.	[X1] is input and [Y1] is output correspondingly through simplex audio and video.	[X1] A/V Through!	1\#.

2.2 Fast Multiplex Switching

Computer-to-matrix	Function	Matrix-to- Computer	Example
[X1]V[Y1],[Y2].	[X1] is input and [Y1],[Y2] are output through simplex video.	V :[X1]->[Y1],[Y2] !	1V1,2,3.
[X 1$] \mathrm{B}[\mathrm{Y} 1],[\mathrm{Y} 2]$.	[X1] is input and [Y1],[Y2] are output through simplex audio and video.	$\mathrm{B}:[\mathrm{X} 1]->[\mathrm{Y} 1],[\mathrm{Y} 2]$!	1B1,2, 3.
[X1]All.	[X1] is input and output to all ways through audio and video.	[X1]A/V TO All!	1All.
[X1]*	[X1] is input and output to all ways	[X1]A/V TO All!	1*!

	through audio and video.		
[X1]*\&	[X1] is input and output to all ways through video.	[X1] V TO All!	$1{ }^{*} \&$
[X1]*\%	[X1] is input and output to all ways through video.	[X1] V TO All!	1*\%
AllV\#.	All video channels are output in one-to-one correspondence.	All V Through!	AllV\#.
All\#.	All video channels are output in one-to-one correspondence.	All A/V Through!	All\#.
[X 1$],[\mathrm{X} 2] \mathrm{V} \#$.	All video channels are output in one-to-one correspondence.	[X1],[X2] V Through!	1,2,3V\#.
[X1],[X2]\#.	All video channels are output in one-to-one correspondence.	[X1],[X2] A/V Through!	1,2,3\#.

2.3 Simplex Closing

Computer-to-matrix	Function	Matrix-to- Computer	Example
OV[Y1].	Simplex video is closed and [Y1] is output.	V :OFF->[Y1]!	0V1.
OB[Y1].	Simplex video is closed and [Y1] is output.	B:OFF ->[Y1]!	0B1.
$0 *[\mathrm{Y} 1] \&$	Simplex video is closed and [Y1] is output.	V:OFF->[Y1]!	
0*[Y1]\%	Simplex video is closed and [Y1] is output.	V :OFF->[Y1]!	0*1\%
0*[Y1]!	Simplex audio and video are closed and [Y1] is output.	B:OFF ->[Y1]!	0*1!
[Y1]\$.	Simplex audio and video are closed and [Y1] is output.	B:OFF ->[Y1]!	1\$.

2.4 Fast Multiplex Closure

Computer-to-matrix	Function	Matrix-to- Computer	Example
[Y1], [Y2]V\$.	[Y2] Multi-channel video is closed, and [Y1], [Y2] are output.	$\mathrm{V}: \mathrm{OFF}->[\mathrm{X} 1],[\mathrm{X} 2]!$	$1,2,3 \mathrm{~V} \$$.
[Y1], [Y2]\$.	Multi-channel audio and video are closed, and [Y1], [Y2] are output.	B:OFF->[Y1],[Y2]!	$1,2,3 \$$.
AllV\$.	All video output is closed.	All V Closed!	AllV\$.
All\$.	All audio and video output is closed.	All A/V Closed!	All\$.

2.5.Global Preset Instruction

Computer-to-ma trix	Function	Matrix-to- Computer	Example
Save[N].	A current audio and video port connection state is saved in the Nth preset.	Save To F[N]!	Save1.
Recall[N].	The Nth preset is recalled and taken as current port connection.	Recall From F[N]!	Recall1.
Clear[N].	The Nth preset is cleared.	Clear F[N]!	Clear1.

3. Query Instruction

3.1 Channel Connection Query Instruction

Computer-to-matrix	Function	Matrix-to- Computer	Example
Status[Y1].	The connection state output by simplex audio and video is queried.	$\begin{aligned} & \mathrm{V}:[\mathrm{X} 1]->[\mathrm{X} 2]! \\ & \mathrm{A}:[\mathrm{X} 1]->[\mathrm{X} 2]! \end{aligned}$	Status1.
Status.	The connection state output by all-way audio and video is queried.	$\begin{aligned} & V:[X 1]->[X 2]! \\ & A:[X 1]->[X 2]! \end{aligned}$	Status.

3.2 System Query Instruction

Computer-tomatrix	Function	Matrix-to- Computer	Example
*Version;	Matrix version query	Version:[X5]	*Version;
*Type;	Matrix model query	Type:[X5]	*Type;
*MIP;	Matrix network mode query Matrix network port numbers query Computer host network port number query Matrix IP query Network gateway query Network subnet mask query Network hardware addresses query	```DHCP:Use/NO Use! MPORT:[X5]! CPORT:[X5]! MIP:[X5]. [X6]. [X7]. [X8]! GATE:[X5]. [X6]. [X7]. [X8]! SUB:[X5]. [X6]. [X7]. [X8]! MAC:[X5]-[X6]-[X7]-[X8]-[X9]-[X10]!```	*MIP;
*Bell;	Buzzer query	Bell:On/Off!	*Bell;
*BR;	Baud rate query	Baudrate:9600!	*BR;

ConnectTest;	Serial connection query	Connect OK!	${ }^{}$ ConnectTest;

4. Setting Instruction

Computer-to-matrix	Function	Matrix-to- Computer	Example
/:BellOff;	Turn off the buzzer	Bell Off!	/:BellOff;
/:Bellon;	Turn on the buzzer	Bell On!	/:Bellon;
/:MessageOff;	Return information toward computer serial port is closed.	Message Off!	/:MessageOff;
/:MessageOn;	Return information toward computer serial port is opened.	Message On!	/:MessageOn;
/:BR[X4];	Baud rate is set.	Baudrate:9600!	/:BR9600;
/\%Lock;	A keyboard is locked.	System Locked!	/\%Lock;
/\%UnLock;	A keyboard is unlocked,	System UnLocked!	/\%UnLock;
/\#MPORT[X1];	Matrix network port number is set.	MPORT:[X1]	/\#MPORT5000;
/\#CPORT[X1];	Main host network port number is set.	CPORT:[X1]	/\#CPORT5100;
/\#MIP[X1].[X2].[X3].[X4] ;	Equipment IP is set.	$\begin{gathered} \text { MIP: }[\mathrm{X} 1] \cdot[\mathrm{X} 2] \cdot[\mathrm{X} 3] \\ .[\mathrm{X} 4] \end{gathered}$	/\#MIP192.168.0.2;
/\#GATE[X1].[X2].[X3].[X4] ;	Equipment gateway number is set.	GATE[X1].[X2].[X3].[X4]	/\#GATE192.168.0.1;
/\#SUB[X1].[X2].[X3].[X5];	Equipment subnet mask is set.	SUB[X1].[X2].[X3].[X5];	/\#SUB255.255.255.0;
$\begin{gathered} \text { /\#MAC[X1]-[X2]-[X3]- } \\ {[\mathrm{X} 4]-[\mathrm{X} 5]-[\mathrm{X} 6] ;} \end{gathered}$	Equipment hardware address is set.	MAC:[X1]-[X2]-[X3] -[X4]-[X5]-[X6]	/\#MAC55-44-33-22- 11-00;
/\#DHCPUSE;	IP is automatic acquired.	DHCPUSE	/\#DHCPUSE;
/\#DHCPNOUSE;	IP is fixed.	DHCPNOUSE	/\#DHCPNOUSE;
	Set network parameter value is wrong.	Out of range!	
	Network setting success.	NETSET:OK	

Network Interface Default Parameters

Network port number: 5000	Master controller network port number: 5100
Matrix network IP: 192.168 .3 .100	IP Master controller network: 192.168 .3 .250
Matrix network gateway number: 192.168 .3 .1	Matrix network subnet mask: 255.255 .255 .0
Matrix network hardware initial address: $0 \times 55.0 \times 44.0 \times 33.0 \times 22.0 \times 11.0 \times 00 ;$	

5. System Instruction

/\#Reset;	Factory settings are restored.	System Reset!	/\#Reset;

